physicsandmathstutor.com

4734

Mark Scheme

1(i)	Total has Poisson distribution with mean $\lambda = 0.21x5+0.24x5 = 2.25$	M1 A1	With ×5
	$P(≥2) = 1 - e^{-1}(1+λ)$ =0.657	M1 A1	λ or 1+λ in brackets (their λ) Or interpolation from tables
(ii)	FITHER: Each length is a random sample	4 B1	In context
(")	OR: Flaws occur independently on the	1	Accept randomly
	reels	[5]	
2	$H_{0}: \mu = (\text{or } \geq) 170$ $H_{1}: \mu < 170$	B1	For both hypotheses: accept words
-	$\overline{x} = 167.5$	B1	SR 2-tail test: B0B1B1M1A1M1A0
	$s^2 = 5.9$	В1	Max 5/7
	EITHER: (a) (167.5 – 170)/ $\sqrt{(5.9/6)}$	M1 Δ1	Standardise 167.5; + or – for M; /6
	Compare with -2.015	M1	Explicitly Allow 2.571
	OR: (β) 170 – t√(5.9/6)	M1	Finding critical value or region.
	= 168.0 Compare 167.5 with CV and reject H₀	A1 M1	With t= 2.015 or 2.571 Explicitly, Allow correct use of 1 t
	There is sufficient evidence at the 5%		M0 if z used
	significance level that the machine dispenses less than 170 ml on average.	A1	SR: B1 if no explicit comparison but conclusion "correct"
		[7]	
	· · · · · · · · · · · · · · · · · · ·	[']	
3(i)	H ₀ : There is no association between the area in which a shopper lives and the day	B1	SR difference in proportions B1 define and evaluate p_1 and p_2
	they shop		with H_0
	E-Values 27.3 14.7	M1	M1A1 for $z = \pm 1.827$ or 1.835(no pe)
	37.7 20.3 $v^2 = (4 3-0 5)^2 (27 3^{-1}+37 7^{-1}+14 7^{-1}+20 3^{-1})$	A1	M1A0 Max 5/8
	= 2.606	M1 ft	At least one E value correct (M1)
	Compare with 2.706 Do not reject H_0 . There is insufficient evidence of an	A1 A1	All correct(A1) At least one x ² , no or wrong cc.
	association.		(M1FtE)
	SR: If H_0 association, lose 1 st B1 and last	A1	All correct (A1); 2.606 of 2.61 (A1) Or use calculator ($p = 0.106$) SR: B1
	M1A1	8	if no explicit comparison, as Q2
			last M1A1
(ii)	Conclusion the same since critical value >	B1	OR from <i>z</i> =±2.17, SR
	2.706	1	
	(and test statistic unchanged)		
	(and test statistic unchanged)	[0]	

4734

Mark Scheme

June 2010

4(i)	$s^2 = (1183.65 - 246.6^2 / 70) / 69$	M1	AEF
()	Use $\overline{x} + zs / (70)$	M1	Allow without ft or with s^2 ; with 70
	$s/\sqrt{(70)}$	A1	Their s
	1 645	Δ1	
	(2 10, 2 04)	Λ1 5	A0 if interval not indicated
(::)	(3.10, 3.94)		
(11)		BI I	
(111)	$4(0.9)^{\circ}(0.1) + 0.9^{\circ}$	M1	Use of bino with $p=0.9$ or 0.1 and 4
			and
	=0.9477	A1 2	Correct terms considered. art 0.948
		[8]	
5(i)	$e^{-2.25} - e^{-4}$	M1	Or find last entry using F(x)
	× 150	A1	
	= 13.1	A1	Or 2.7 if found first
	Last: 150 – sum=2.7	A1 ft 4	Or 13.1 anv accuracy
(ii)	(H ₀ : Data fits the model, H ₁ : Data does	B1	At least two correct
()	not fit)	2.	All correct
	Combine last two cells	M1*Den	In range 13.2 to 13.5
	$v^2 = 7 8^2/33 2 \pm 11 6^2/61 6 \pm 7 4^2/39 4 \pm$		SR: If last 2 cells are not combined
	$\chi = 7.0700.2$ + 11.0701.0 + 7.4700.4 +	Δ1	$B0M1\Delta1\Delta1$ (for 13, 5) M1\Delta1
	-122(46)	M1	If no explicit comparison B1 if
	-13.3(40)		applusion follows
		A 1 ff	COnclusion follows
	(There is sufficient evidence at the $2\frac{1}{2}$ %	Dep 6	
	significance level that) the model is not a	[40]	
	aood fit		
	goodin		
			-
6(i)	Anxiety scores; have normal	B2	Context + 2 valid points B2
6(i)	Anxiety scores; have normal distributions;	B2	Context + 2 valid points B2 Context + 1VP, no context +2VP B1
6(i)	Anxiety scores; have normal distributions; common variance; independent samples	B2	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words
6(i)	Anxiety scores; have normal distributions; common variance; independent samples H_0 : $\mu_E = \mu_C$, H_1 : $\mu_E < \mu_C$	B2 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$	B2 B1 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 =
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$	B2 B1 B1 M1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18)
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$	B2 B1 B1 M1 A1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct +
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615	B2 B1 B1 M1 A1 A1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13)
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$	B2 B1 B1 M1 A1 A1 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or +
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$	B2 B1 B1 M1 A1 A1 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not	B2 B1 B1 M1 A1 A1 B1 M1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0	B2 B1 B1 M1 A1 A1 B1 M1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5%	B2 B1 B1 M1 A1 A1 B1 M1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is	B2 B1 B1 M1 A1 A1 B1 M1 A1 ft	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 B1 M1 M1 A1 ft A1 ft	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 B1 M1 A1 ft A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1:
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 B1 M1 A1 ft A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or > st. t = ±1.699 or ±2.015
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 B1 M1 A1 ft A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 B1 M1 A1 ft A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1: C= 6.11(2) A1;
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 B1 M1 M1 A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1; G= 6.11(2) A1; 6.112> 6.05 and reject H, etcM1A1
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 B1 M1 A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1; G= 6.11(2) A1; 6.112> 6.05 and reject H ₀ etcM1A1
6(i) (ii)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes Sample sizes are too small (to appeal to CUT)	B2 B1 B1 A1 A1 B1 M1 A1 ft B1 10 B1 1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or +, +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1; G= 6.11(2) A1; 6.112> 6.05 and reject H ₀ etcM1A1
6(i) (ii)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes Sample sizes are too small (to appeal to CLT)	B2 B1 B1 M1 A1 B1 M1 A1 ft D1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1; G= 6.11(2) A1; 6.112> 6.05 and reject H ₀ etcM1A1
6(i) (ii)	Anxiety scores; have normal distributions; common variance; independent samples $H_0: \mu_E = \mu_C$, $H_1: \mu_E < \mu_C$ $s^2 = (1923.56+1147.58)/29 (= 105.9)$ $(t) = (32.16 - 38.21)/\sqrt{[105.9(18^{-1}+13^{-1})]}$ = -1.615 $t_{crit} = -1.699$ Compare -1.615 with -1.699 and do not reject H_0 There is insufficient evidence at the 5% significance level to show that anxiety is reduced by listening to relaxation tapes Sample sizes are too small (to appeal to CLT)	B2 B1 B1 A1 A1 B1 M1 A1 ft B1 B1 B1 B1 B1 1 [11]	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg s^2 = 1923.56/(17or18) All correct + 47.5/(12or13) Or + Or +; accept art ±1.70 Or + , +. M0 if t not ±1.699,±2.045 In context, not over-assertive OR Find CV or CR: B2B1B1; C= or ≥ st, t = ±1.699 or ±2.015 M1A1 t= ±1.699 B1; G= 6.11(2) A1; 6.112> 6.05 and reject H ₀ etcM1A1

physicsandmathstutor.com

Mark Scheme

June 2010

7(i)	Use $\Sigma F + \overline{\Sigma M} \sim N(\mu, \sigma^2)$	M1	Sum of indep normal variables is
	$\mu = 1104.9$	A1	normal
	$\sigma^2 = 6 \times 9.3^2 + 9 \times 8.5^2$	M1	
	= 1169.2	A1	
	$P(>1150) = 1 - \Phi([1150 - 100))$	M1	Standardise, correct tail. M0 $\sigma/\sqrt{15}$
	1104.9]/√(1169.2)	A1	Accept .094
	= 0.0937	6	
(ii)	If unknown M, prob $\frac{1}{2}$, 6F and 9M as	M1	Considering two cases
	before.		
	If unknown W, prob ½, 7W and 8M	B1 B1	Mean and variance
	Having N(1093 3 1183 4)	0101	
		A1	
	$P(> 1150) = 1 - \Phi(1.648) = 0.0497$	M1	Use of 1
	$P = \pm x 0.0036 \pm \pm x 0.0497$	Δ1	APT 0.072
	$1 = \frac{1}{2} \times 0.0000 + \frac{1}{2} \times 0.0407$	6	ART 0.072
	= 0.07165	[12]	
		r1	
8(i)	$X = \frac{1}{4}S^2$	B1	
	$r^s 8 [4]^s$		
	$F(s) = \int_{1}^{s} \frac{d}{3s^{3}} ds = \left -\frac{1}{3s^{2}} \right $	M1	
	$4(1 1/c^2)$	۸.1	lanoro rongo horo
	$=\frac{1}{3}(1-1/8)$		
	$G(x) = P(X \le x) = P(S \le 2\sqrt{x})$	M1	SR: B1 for $G(x) = F(2\sqrt{x})$ without
	$=F(2\sqrt{x})$		Justification and with correct result
	4 1	Λ1 ft	
	$=\frac{1}{3}-\frac{1}{3x}$	AIII	
	$\left(\frac{1}{1}, \frac{1}{1} < r < 1\right)$	N / 1	
	$g(x) = \begin{cases} 3x^2 & 4 \end{cases}$	IVI I R1	For range
	0 otherwise.	Ы	T of Tallge
		7	
(ii)	EITHER: $G(m) = \frac{1}{2}$	M1	ft G(<i>x</i>) in (i)
	$\Rightarrow \frac{4}{2} - \frac{1}{2} = \frac{1}{2}$	Δ1 ft	CAO
	$\rightarrow m - 2$		
	$\rightarrow m - \overline{5}$	A1	
	-m 1 1		
	OR: $\int_{-\infty}^{\infty} \frac{1}{x^2} dx = \frac{1}{2}$	M1	Allow wrong $\frac{1}{4}$
	$J_{1/4} 3x^2$ 2		
	$\rightarrow \left[-\frac{1}{2} \right]^m = \frac{1}{2}$		
	$- \begin{bmatrix} 3x \end{bmatrix}_{1/4} - 2$	A1	Allow wrong $\frac{1}{4}$
	$\Rightarrow m = \frac{2}{\pi}$	A1	CAO
	5		
		3	
		[10]	