1(i)	Total has Poisson distribution with mean $\lambda=0.21 \times 5+0.24 \times 5=2.25$ $\begin{aligned} P(\geq 2) & =1-e^{-\lambda}(1+\lambda) \\ & =0.657 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \begin{array}{r} \text { A1 } \end{array} \\ & 4 \end{aligned}$	With $\times 5$ λ or $1+\lambda$ in brackets (their λ) Or interpolation from tables
(ii)	EITHER: Each Iength is a random sample OR: Flaws occur independently on the reels	$\mathrm{B} 1$ 1 [5]	In context Accept randomly
2	$\begin{aligned} & \mathrm{H}_{0}: \mu=(\mathrm{or} \geq) 170, \mathrm{H}_{1}: \mu<170 \\ & \bar{x}=167.5 \\ & \mathrm{~s}^{2}=5.9 \end{aligned}$ EITHER: $(\alpha)(167.5-170) / \sqrt{ }(5.9 / 6)$ $=-2.52(1)$ Compare with -2.015 OR: $\begin{aligned} & \text { (} \beta \text {) } 170-t \sqrt{ }(5.9 / 6) \\ & =168.0 \end{aligned}$ Compare 167.5 with CV and reject H_{0} There is sufficient evidence at the 5% significance level that the machine dispenses less than 170 ml on average.	A1 M1 M1 A1 M1 A1 [7]	For both hypotheses; accept words SR 2-tail test: B0B1B1M1A1M1A0 Max 5/7 Standardise 167.5; + or - for M; /6 seen Explicitly Allow 2.571 Finding critical value or region. With $t=2.015$ or 2.571 Explicitly. Allow correct use of $\|t\|$ M0 if z used SR: B1 if no explicit comparison but conclusion "correct"
3(i)	H_{0} : There is no association between the area in which a shopper lives and the day they shop (H_{1} : All alternatives) $\begin{array}{lll}\mathrm{E} \text {-Values } & 27.3 & 14.7\end{array}$ $37.7 \quad 20.3$ $x^{2}=(4.3-0.5)^{2}\left(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1}\right)$ $=2.606$ Compare with 2.706 Do not reject H_{0}. There is insufficient evidence of an association. SR: If H_{0} association, lose $1^{\text {st }} \mathrm{B} 1$ and last M1A1	B1 M1 A1 M1 ft A1 A1 M1 A1 8	SR difference in proportions B 1 define and evaluate p_{1} and p_{2} with H_{0} B1 for $p=0.42$ M1A1 for $z= \pm 1.827$ or 1.835 (no pe) M1A0 Max 5/8 At least one E value correct (M1) All correct(A1) At least one X^{2}, no or wrong cc, (M1FtE) All correct (A1); 2.606 or 2.61 (A1) Or use calculator ($p=0.106$) SR: B1 if no explicit comparison, as Q2 SR: If H_{0} association, lose $1^{\text {st }} \mathrm{B} 1$ and last M1A1
(ii)	Conclusion the same since critical value > 2.706 (and test statistic unchanged)	B1 1 [9]	OR from $z= \pm 2.17, S R$

4(i)	$\begin{aligned} & \mathrm{s}^{2}=\left(1183.65-246.6^{2} / 70\right) / 69 \\ & \text { Use } \bar{x} \pm z s / \sqrt{ }(70) \\ & \mathrm{s} / \sqrt{ }(70) \\ & 1.645 \\ & (3.10,3.94) \end{aligned}$	 M1 M1 A1 A1 A1 5	AEF Allow without ft or with s^{2}; with 70 Their s A0 if interval not indicated
(ii)	Change 90 to around 90	B1	Or equivalent
(iii)	$\begin{aligned} & 4(0.9)^{3}(0.1)+0.9^{4} \\ & =0.9477 \end{aligned}$	$\begin{array}{cc} \text { M1 } & \\ & \\ \text { A1 } & \mathbf{2} \\ & {[8]} \end{array}$	Use of bino with $p=0.9$ or 0.1 and 4 and Correct terms considered. art 0.948
5(i)	$\begin{aligned} & \mathrm{e}^{-2.25}-\mathrm{e}^{-4} \\ & \times 150 \\ & =13.1 \\ & \text { Last: } 150-\text { sum }=2.7 \end{aligned}$	M1 A1 A1 A1 ft 4	Or find last entry using $\mathrm{F}(x)$ Or 2.7 if found first Or 13.1 any accuracy
(ii)	$\left(\mathrm{H}_{0}: \mathrm{Data}\right.$ fits the model, $\mathrm{H}_{1}:$ Data does not fit) Combine last two cells $x^{2}=7.8^{2} / 33.2+11.6^{2} / 61.6+7.4^{2} / 39.4+$ $11.2^{2} / 15.8$ $=13.3(46)$ Compare with 9.348 (or 11.14), reject H_{0} (There is sufficient evidence at the $2 \frac{1}{2} \%$ significance level that) the model is not a good fit	B1 M1*Dep A1 A1 M1 A1 ft Dep* 6 $[10]$	At least two correct All correct In range 13.2 to 13.5 SR: If last 2 cells are not combined BOM1A1A1 (for 13. 5) M1A1 If no explicit comparison B1 if conclusion follows
6(i)	Anxiety scores; have normal distributions; common variance; independent samples $\begin{aligned} & \mathrm{H}_{0}: \mu_{E}=\mu_{C}, \mathrm{H}_{1}: \mu_{E}<\mu_{C} \\ & s^{2}=(1923.56+1147.58) / 29(=105.9) \\ & (t)=(32.16-38.21) / \sqrt{ }\left[105.9\left(18^{-1}+13^{-1}\right)\right] \\ & =-1.615 \\ & t_{\text {crit }}=-1.699 \end{aligned}$ Compare -1.615 with -1.699 and do not reject H_{0} There is insufficient evidence at the 5\% significance level to show that anxiety is reduced by listening to relaxation tapes	B2 B1 B1 M1 A1 A1 B1 M1 A1 ft 10	Context + 2 valid points B2 Context + 1VP, no context +2VP B1 Not in words Allow 1 error; eg $s^{2}=$ 1923.56/(17or18) All correct 47.5/(12or13) $\mathrm{Or}+$ Or + ; accept art ± 1.70 Or,++ M0 if t not $\pm 1.699, \pm 2.045$ In context, not over-assertive OR Find CV or CR: B2B1B1; $\mathrm{C}=$ or $\geq s t, t= \pm 1.699$ or ± 2.015 M1A1 $t= \pm 1.699 \mathrm{~B} 1 ; \mathrm{G}=6.11(2) \mathrm{A} 1$; $6.112>6.05$ and reject H_{0} etcM1A1
(ii)	Sample sizes are too small (to appeal to CLT)	B1 1 [11]	

7(i)	$\begin{aligned} & \text { Use } \sum F+\sum M \sim \mathrm{~N}\left(\mu, \sigma^{2}\right) \\ & \mu=1104.9 \\ & \sigma^{2}=6 \times 9.3^{2}+9 \times 8.5^{2} \\ & =1169.2 \\ & \mathrm{P}(>1150)=1-\Phi([1150- \\ & 1104.9] / \sqrt{ }(1169.2) \\ & =0.0 . \end{aligned}$	M1 A1 M1 A1 M1 A1 6	Sum of indep normal variables is normal Standardise, correct tail. M0 $\sigma / \sqrt{ } 15$ Accept .094
(ii)	If unknown M, prob $\frac{1}{2}, 6 F$ and 9 M as before. If unknown W, prob $\frac{1}{2}, 7 \mathrm{~W}$ and 8 M Having $N(1093.3,1183.4)$ $\begin{aligned} & P(>1150)=1-\Phi(1.648)=0.0497 \\ & P=\frac{1}{2} \times 0.0936+\frac{1}{2} \times 0.0497 \\ & =0.07165 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 B1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \quad 6 \\ & {[12]} \end{aligned}$	Considering two cases Mean and variance Use of $\frac{1}{2}$ ART 0.072
8(i)	$\begin{aligned} & \begin{array}{l} X= \\ \quad \frac{1}{4} S^{2} \\ \\ \quad=\frac{4}{3}(1-1 / s)=\int_{1}^{s} \frac{8}{3 s^{3}} \mathrm{~d} s=\left[-\frac{4}{3 s^{2}}\right]_{1}^{s} \\ \mathrm{G}(x) \\ =\mathrm{P}(X \leq x)=\mathrm{P}(S \leq 2 \sqrt{ } x) \\ \\ =\mathrm{F}(2 \sqrt{ } x) \end{array} \\ & =\frac{4}{3}-\frac{1}{3 x} \\ & g(x)= \begin{cases}\frac{1}{3 x^{2}} & \frac{1}{4} \leq x \leq 1, \\ 0 & \text { otherwise. }\end{cases} \end{aligned}$	A1 M1 A1 ft M1 B1 7	Ignore range here SR: B1 for $\mathrm{G}(x)=\mathrm{F}(2 \sqrt{ } x)$ without justification and with correct result ft F For $\mathrm{G}^{\prime}(a)$ For range
(ii)	EITHER: $\mathrm{G}(m)=\frac{1}{2}$ $\begin{aligned} & \Rightarrow \frac{4}{3}-\frac{1}{3 x}=\frac{1}{2} \\ & \Rightarrow m=\frac{2}{5} \end{aligned}$	M1 A1 ft A1 M1 M A1 A1	$\mathrm{ft} \mathrm{G}(x)$ in (i) CAO Allow wrong $\frac{1}{4}$ Allow wrong $\frac{1}{4}$ CAO

